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Overview

This paper uses a reinforcement learning approach (Philip
(2020)) to study the determinants of price discovery

@ The methodology allows for nonlinearities and multiple
conditioning variables, which can be problematic in
standard VARs

@ The most important conditioning variable is “the state of
the order book” (depth imbalance)

@ The results are consistent with predictions from recent
models that emphasize the role of limit orders for price
discovery
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Reinforcement learning approach
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Contrary to the stochastic control approach (e.g., Bertsimas
and Lo (1998)), we are not specifying an exogenous price
process
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Reinforcement learning approach to estimate
permanent price impact (Philip (2020))

@ Consider a market with two possible actions (buy and sell)
and two possible states (high volatility, low volatility)

@ What is the permanent price impact of buying in the high
volatility state?
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Reinforcement learning approach to estimate
permanent price impact (Philip (2020))

@ Consider a market with two possible actions (buy and sell)
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@ What is the permanent price impact of buying in the high
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How to estimate the parameters?
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Unconditional evidence

3 orders x 2 buy/sell x 5 sizes = 30 actions
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Unconditional evidence

3 orders x 2 buy/sell x 5 sizes = 30 actions

nnnnnnnnnn Limit order submi Limit order cancellation

Orcrsze Ontersze Ontersize

@ Market orders contribute 53.87% to price discovery
@ The paper argues that results are complementary to
Brogaard, Hendershott, and Riordan (2019)

e This argument suggests that the RL methodology is “better”
mostly because it can handle many more variables rather
than because of nonlinearities

e Does a linear VAR give the same results?

417



Conditional evidence (depth imbalance)

Market order Limit submit
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“Consistent with Ricco, Rindi, and Seppi (2020), even a large market buy
order may have a negative effect on prices if the limit order book imbalance is

negative.”

@ My interpretation: the state of the order book predicts
returns; e.g., Cao et al. (2009); Cont et al. (2014); Stoikov

(2018)

@ Low probability states and bias-variance trade-off?
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Link with theory

@ Why not systematically test the predictions of Ricco, Rindi,
and Seppi (2020) and other recent models?

e Low volatility vs high volatility

e Market orders executed at inside vs outside prices

e Non-Markovian learning? Standing limit order book is a
sufficient statistic for prior order history?

@ Time effects

e Quite a few papers examine time-of-day effects in price
impact (Hasbrouck (1991), ..., Yueshen and Zhang (2020))
e Perhaps focus on the market/limit order distinction
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Overview

Well-written and interesting paper

My suggestions:
@ Emphasize differences relative to standard VARs

@ Develop the economic intuition and the relation to existing
work for the depth imbalance results and time-of-day effect

@ Perhaps a more systematic link with theory would help
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