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This appendix is in eight sections. Section I provides equilibrium existence conditions. Section II

performs a stability analysis. Section III studies the role of liquidity trading persistence. Section IV

solves and discusses a model in which liquidity trading takes place at different frequencies. Section V

solves and discusses a model with seasonality in mean liquidity trading. Section VI solves and

discusses a model with multiple groups of infrequent traders. Section VII explains how to compute

trading volume when 0 < q < 1. Section VIII contains additional empirical results for daily

returns. More precisely, I examine bid-ask bounce, firm size, different subsamples, and institutional

ownership.

I. Equilibrium Existence

This section details equilibrium existence conditions. For completeness, I first solve for the

equilibrium coefficients in the frictionless economy. Spiegel (1998) and Watanabe (2008) provide

similar derivations.

Proposition IA1: Let q = 0 and h = 1. In a linear stationary REE, the price vector is given by

Pt = P̄ + Pθθt +
aD

R− aD
Dt, (IA1)

where Pθ solves a quadratic matrix equation given below.

This equation has 2N solutions if 1
4

(
R−aθ
γF

)2
IN −

(
R

R−aD

)2
Σ

1
2
θ ΣDΣ

1
2
θ is positive definite.
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Proof of Proposition IA1: Conjecture that Pt = P̄ + Pθθt + PDDt. The demand of frequent

traders is XF
t = 1

γF
Σ−1

1 Et[Qt+1], where Σ1 ≡ Vart[Qt+1] = PθΣθP
′
θ + (PD + IN )ΣD(PD + IN )′ is

a constant matrix under the price conjecture. The market-clearing condition is γFΣ1

(
θt + S̄

)
=

Et[Qt+1]. Matching terms with the price conjecture gives

PD =
aD

R− aD
IN , (IA2)

PθΣθP
′
θ +

R− aθ
γF

Pθ +

(
R

R− aD

)2

ΣD = 0N , and (IA3)

P̄ =
1

R− 1

(
(R− aθ)PθS̄ + (1− aθ)Pθθ̄ +

(1− aD)R

R− aD
D̄

)
. (IA4)

The last equation uses the fact that γFΣ1 = −(R − aθ)Pθ from the second equation. The price

impact matrix Pθ solves the quadratic matrix equation (IA3) and must be symmetric. Assuming

that Σθ is positive definite, multiply both sides of (IA3) by Σ
1
2
θ (the unique positive definite square

root of Σθ) and reorganize terms to obtain

(
Σ

1
2
θ PθΣ

1
2
θ +

R− aθ
2γF

IN

)2

=
1

4

(
R− aθ
γF

)2

IN −
(

R

R− aD

)2

Σ
1
2
θ ΣDΣ

1
2
θ . (IA5)

If 1
4

(
R−aθ
γF

)2
Σ−2
θ −

(
R

R−aD

)2
Σ
− 1

2
θ ΣDΣ

− 1
2

θ is positive definite, then its spectral decomposition is

given by ΓΛΓ′, where Λ is a diagonal matrix of eigenvalues λi (i = 1, . . . , N) and Γ is an orthonormal

matrix with eigenvectors as columns. Thus,

Pθ = −1

2

(
R− aθ
γF

)
Σ−1
θ + ΓΛ

1
2 Γ′. (IA6)

Since each diagonal element of Λ
1
2 can take values ±

√
λi to satisfy (IA5), Pθ admits 2N solutions.�

Using the results of Corollary 1 in the main text, it can be shown in a similar way that the

infrequent rebalancing economy (q = 1) admits 2N solutions.

To gain more intuition, I follow Watanabe (2008) and make the following assumption.

Assumption IA1 (Symmetric securities): The liquidity and dividend shock volatilities (correla-

tions) are the same for all assets, given respectively by σθ and σD (ρθ and ρD).

The next proposition provides equilibrium existence conditions.
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Proposition IA2: Under Assumption IA1, the frictionless economy (q = 0, h = 1) / infrequent

rebalancing economy (q = 1) admits four symmetric equilibria if

(R− aθ)2 − 4γ?2σ?θ
2σ?D

2

(
R

R− aD

)2

max {(1 + (N − 1)ρθ)(1 + (N − 1)ρD), (1− ρθ)(1− ρD)} > 0, (IA7)

where γ? = γF , σ?θ
2 = σ2

θ , and σ?D
2 = σ2

D when q = 0 and h = 1, and where γ? = (k +

1)
(R−aθ)(Rk+1−akθ )

(Rk+1−1)(Rk+1−ak+1
θ )

γI , σ?θ
2 =

(
1 +

(
Rk+1(1−akθ )

Rk+1−akθ

)2
)
σ2
θ , and σ?D

2 =
(

1 +
∑k

i=1R
2i
)
σ2
D when

q = 1.

Proof of Proposition IA2: Under Assumption IA1, Σθ = σ2
θΓΛθΓ

′ by the spectral decomposition

of Σθ, where Λθ is a diagonal matrix of eigenvalues and Γ is an orthogonal matrix with eigenvectors

xi (i = 1, . . . , n) as columns. More precisely, x1 = 1N/
√
N and xi = [1′i−1 − (i − 1)0′N−i]

′ for

i = 2, . . . , N . The first eigenvalue equals 1 + (N − 1)ρθ. All the other eigenvalues equal 1− ρθ. In

a similar way, ΣD = σ2
DΓΛDΓ′. Hence, Σ

1
2
θ ΣDΣ

1
2
θ = σ2

θσ
2
DΓΛθΛDΓ′.

Frictionless economy: Recall from (IA5) that the following matrix has to be positive definite

for an equilibrium to exist:

1

4

(
R− aθ
γF

)2

IN −
(

R

R− aD

)2

Σ
1
2
θ ΣDΣ

1
2
θ . (IA8)

Plugging the previous result in the right part of (IA8) and rearranging terms gives

Γ

(
1

4

(
R− aθ
γ

)2

IN −
(

R

R− aD

)2

σ2
θσ

2
DΛθΛD

)
Γ′. (IA9)

This matrix must be positive definite for an equilibrium to exist. Since a symmetric matrix is

positive definite if and only if each of its eigenvalues is positive, each of the diagonal elements in

1
4

(
R−aθ
γ

)2
IN −

(
R

R−aD

)2
σ2
θσ

2
DΛθΛD must be positive. The eigenvalues are given by

λ1 =
1

4

(
R− aθ
γF

)2

−
(

R

R− aD

)2

σ2
θσ

2
D(1 + (N − 1)ρθ)(1 + (N − 1)ρD), and (IA10)

λi =
1

4

(
R− aθ
γF

)2

−
(

R

R− aD

)2

σ2
θσ

2
D(1− ρD)(1− ρD), i = 2, . . . , N. (IA11)
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The result follows from comparing (IA10) and (IA11). The proof for the infrequent rebalancing

economy is equivalent using (from Corollary 1 and the proof of Proposition IA1)

1

4

(
(Rk+1 − 1)(Rk+1 − ak+1

θ )

γI(k + 1)(Rk+1 − akθ)

)2

IN

−
(

R

R− aD

)2
(

1 +

k∑
i=1

R2i

)(
1 +

(
Rk+1(1− akθ)
Rk+1 − akθ

)2
)

Σ
1
2
θ ΣDΣ

1
2
θ (IA12)

instead of (IA8).

To prove that there exists four symmetric equilibria, use (IA8) again and Σθ = σ2
θΓΛθΓ

′ (As-

sumption IA1) to obtain

Pθ = Γσ−2
θ Λ−1

θ

(
aθ −R

2γF
IN + Λ

1
2

)
Γ′, (IA13)

where Λ = 1
4

(
R−aθ
γF

)2
IN −

(
R

R−aD

)2
σ2
θσ

2
DΛθΛD. Each diagonal element of Λ

1
2 can take values

±
√
λi. Given the eigenvector matrix Γ, it can be verified that all the eigenvalues (IA11) must have

the same sign for Pθ to be symmetric with equal diagonal coefficients. Since (IA10) can take two

values, this gives four symmetric equilibria. The proof is similar for the infrequent rebalancing

economy.�

As the number of assets N grows, an equilibrium becomes less likely to exist if dividend and

liquidity shocks are correlated in the same direction across assets. In that case, agents cannot

diversify liquidity and dividend risks and here must absorb a growing amount of correlated risks

in equilibrium. In both economies, the effect of fundamental parameters is intuitive: more volatile

and persistent sources of risk shrink the existence region. The only exception is the persistence of

liquidity shocks aθ. When q = 1, an equilibrium is always more likely to exist if liquidity trading is

a random walk rather than an independent shock. But the reverse is true when q = 0. Section III

provides additional details about the role of liquidity shock persistence.

II. Stability Analysis

To assess equilibrium stability, I examine whether small variation in the belief about next

period’s price impact results in a large deviation in the belief about the current price impact. In
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particular, in the one-asset case, an equilibrium is stable if

∣∣∣∣ ∂Pθ,t∂Pθ,t+1

∣∣∣∣ < 1, (IA14)

else the equilibrium is unstable. This analysis is equivalent to examining how a small deviation

in the belief about next period’s volatility affects current volatility (Bacchetta and Van Wincoop

(2006)).

An additional complication arises because the model features multiple assets. Assumption IA1

permits a direct extension from the one-asset case. Under this assumption, traders’ asset allocation

problem reduces to investing in a set of N uncorrelated funds. I can then perform the stability

analysis separately for each of these funds.

Frictionless economy: The price impact of liquidity shocks is given by

Pθ = − γF
R− aθ

Vart[Pt+1 +Dt+1]. (IA15)

The expression on the right-hand side is forward-looking. I can then rewrite (IA15) as follows:

Pθ,t = − γF
R− aθ

(
Pθ,t+1ΣθP

′
θ,t+1 +

(
R

R− aD

)2

ΣD

)
, (IA16)

where Pθ,t is the current price impact of liquidity shocks and Pθ,t+1 is the price impact in the next

period according to traders’ beliefs. In a stationary equilibrium, Pθ,t = Pθ,t+1.

Using Assumption IA1, (IA16) can be rewritten as

ΛPθ,t = − γF
R− aθ

(
Λ2
Pθ,t+1σ

2
θΛθ +

(
R

R− aD

)2

σ2
DΛD

)
, (IA17)

where ΛPθ,t is the eigenvalue matrix from the spectral decomposition of Pθ. Let λX(j) denote the

jth eigenvalue of ΛX . Taking the partial derivative of the current price impact eigenvalue with

respect to next period’s eigenvalue gives

∂λPθ,t(j)

∂λPθ,t+1(j)
= − γF

R− aθ
2λPθ,t+1(j)σ2

θλθ(j). (IA18)
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In the stationary economy, (IA17) shows that each eigenvalue λPθ(j) has two roots given by

(
2

γF
R− aθ

σ2
θλθ(j)

)−1
−1±

√
1− 4

(
γF

R− aθ

)2

σ2
θλθ(j)

(
R

R− aD

)2

σ2
DλD(j)

 . (IA19)

Thus,

∂λPθ,t(j)

∂λPθ,t+1(j)
= −1±

√
1− 4

(
γF

R− aθ

)2

σ2
θλθ(j)

(
R

R− aD

)2

σ2
DλD(j). (IA20)

Only the positive root of (IA19) is stable according to the stability criterion (IA14). Therefore, the

only stable equilibrium consists of the tuple
(
λφPθ (1)+, λφPθ (2)+, . . . , λφPθ (N)+

)
. This is the low

volatility equilibrium (i.e., the equilibrium with the lowest price impact).

Infrequent rebalancing economy: The price impact of liquidity shocks is given by

Pθ = −
γI(k + 1)(Rk+1 − akθ)

(Rk+1 − 1)(Rk+1 − ak+1
θ )

Vart

[
Pt+k+1 +

k+1∑
i=1

Rk+1−iDt+i

]
. (IA21)

Since agents trade only every k+1 periods, the stability analysis relates the price impact of liquidity

shocks today to the belief about the price impact in k+ 1 periods. Using the results of Corollary 1

from the main text in (IA21) gives

Pθ,t =−
γI(k + 1)(Rk+1 − akθ)

(Rk+1 − 1)(Rk+1 − ak+1
θ )((

1 +

(
Rk+1(1− akθ)
Rk+1 − akθ

)2
)
Pθ,t+1ΣθP

′
θ,t+1 +

(
R

R− aD

)2
(

k∑
i=0

R2i

)
ΣD

)
. (IA22)

The stability analysis is then identical to the analysis for the frictionless economy.

III. The Role of Liquidity Trading Persistence

This appendix contrasts the role of aθ when q = 0 and q = 1. In the frictionless economy,

frequent traders are more willing to accommodate liquidity shocks when noisy supplies reverse

rapidly, since they can unwind their trades more easily in the next period. Cespa and Vives (2012)

detail a similar effect in a dynamic nonstationary setup. When aθ is low, traders provide more
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liquidity, which lowers the price impact of liquidity shocks. As a result, increasing aθ increases the

price impact of liquidity shocks when q = 0.

In the infrequent rebalancing economy, the role of aθ is more complex. Infrequent traders absorb

at each rebalancing date the following vector of adjusted supplies:

θ̃t ≡ (k + 1)θt −
k∑
i=1

XI
t−i. (IA23)

In equilibrium, XI
t = θ̃t. Market-clearing implies that

θ̃t+k+1 = (k + 1) (θt+k+1 − θt+k) + θ̃t, (IA24)

where θ̃t+k+1 is the vector of adjusted supplies at the next rebalancing date. The infrequent traders

who rebalance today only care about the change in noisy supplies between t+ k+ 1 and t+ k since

all the previous changes in noisy supplies are out of the market (absorbed by other infrequent

traders). It follows that

Et
[
θ̃t+k+1

]
= θ̃t − (k + 1)akθ(1− aθ)θt. (IA25)

Equation (IA25) implies that when aθ = 0 or aθ = 1, there is no predictable variation in θ̃t+k+1

relative to its value at date t. Focusing only on this factor, the price impact of liquidity shocks

is therefore the same regardless of whether aθ = 0 or aθ = 1. In fact, price impact is highest

when aθ = 0 or aθ = 1 (focusing only on this factor). Since θ̃t and θt are equal on average and

1 > akθ(1− aθ) ≥ 0, θ̃t+k+1 reverses predictably when 0 < aθ < 1. This makes infrequent traders at

date t more willing to provide liquidity.

Liquidity trading persistence increases the price impact of liquidity shocks unambiguously when

q = 0. This is not the case when q = 1 since the first-difference of an autoregressive process is

more volatile when the process reverses rapidly (i.e., the elements of Vart[θt+k+1 − θt+k] decrease

with aθ). The next proposition formalizes this difference between the frictionless and infrequent

rebalancing economies.

Proposition IA3: Consider the low volatility equilibrium of a single-asset economy. When q = 0,
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the price impact of liquidity shocks is always larger in absolute value when aθ = 1 than when aθ = 0.

When q = 1, the price impact of liquidity shocks is always larger in absolute value when aθ = 0

than when aθ = 1.

The predictability factor is the same regardless of whether aθ = 0 or aθ = 1 (equation (IA25)),

but when aθ = 0 the volatility of adjusted noisy supplies is larger than when aθ = 1 (equa-

tion (IA24)). Proposition IA3 explains why varying aθ has an ambiguous effect on price impact

when 0 < q < 1. To prove the proposition, I use the following lemma.

Lemma IA1: In the low volatility equilibrium of the frictionless economy with a single asset, (a)

∂Pθ
∂aθ

< 0, and (b) ∂Pθ
∂σ2
θ
< 0.

Proof of Lemma:IA1: In the one-asset economy, price impact when q = 0 is given by

Pθ =
1

2σ2
θ

−R− aθ
γF

+

√(
R− aθ
γF

)2

− 4σ2
θσ

2
D

(
R

R− aD

)2
 . (IA26)

Part (a) follows immediately from taking the partial derivative. Consider now the variance of

liquidity shocks. Let C ≡ R−aθ
γF

and D ≡ σD
R

R−aD to simplify notation. The partial derivative is

given by

∂Pθ
∂σ2

θ

=
1

2σ4
θ

C − C2√
C2 − 4D2σ2

θ

+
2D2σ2

θ√
C2 − 4D2σ2

θ

 . (IA27)

Therefore, ∂Pθ
∂σ2
θ
< 0 if C2 − C

√
C2 − 4D2σ2

θ − 2D2σ2
θ > 0. This is indeed the case since C2 −

C
√
C2 − 4D2σ2

θ − 2D2σ2
θ = 1

2

(
C −

√
C2 − 4D2σ2

θ

)2

.�

Proof of Proposition IA3: The statement for q = 0 follows from Part (a) of Lemma IA1. When

q = 1, the proof of Corollary 1 in the main text shows that price impact is given by

Pθ =
1

2σ2
θ

−Rk+1 − 1

γI(k + 1)
+

√(
Rk+1 − 1

γI(k + 1)

)2

− 4σ2
θσ

2
D

(
R

R− aD

)2
 , for aθ = 0, (IA28)

Pθ =
1

4σ2
θ

−Rk+1 − 1

γI(k + 1)
+

√(
Rk+1 − 1

γI(k + 1)

)2

− 8σ2
θσ

2
D

(
R

R− aD

)2
 , for aθ = 1. (IA29)
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The result follows by applying Part (b) of Lemma IA1.�

IV. A Model with Different Liquidity Trading Frequencies

This section examines a model in which liquidity trading occurs at different frequencies.

A. Model

I use a simplified setup to focus on the key result. Time is discrete and goes to infinity. An

asset pays iid dividends εDt ∼ N (0, σ2
D) each period. A risk-free asset in perfectly elastic supply

with gross return R > 1 is also available. Liquidity shocks occur at different frequencies: high

frequency (H) and low frequency (L). Consider the simple case in which low frequency shocks take

place every two periods:

θH,t = aHθH,t−1 + εθH,t, (IA30)

θL,t = aLθL,t−2 + εθL,t, (IA31)

where εθi,t ∼ N (0, σ2
θ), i ∈ (L,H). For simplicity, the two liquidity shocks are uncorrelated. I con-

sider a stationary setting in which the mass of liquidity traders is constant every period. Therefore,

half the mass of low frequency liquidity traders is present in the market at each date. The total

mass of liquidity traders equals one, and the mass of low frequency traders equals q. As in the

main model, an agent trades every period and maximizes his exponential utility over next period’s

wealth. Let xF,t denote his asset demand. The market-clearing condition is then given by

xF,t = (1− q)θH,t +
q

2
θL,t +

q

2
θL,t−1︸ ︷︷ ︸
lagged

. (IA32)

The last term is the lagged supply from low frequency liquidity traders.

In a linear stationary equilibrium, the asset price is given by

pt = pθ,HθH,t + pθ,L1θL,t + pθ,L2θL,t−1. (IA33)

The three state variables are the supply of high frequency liquidity traders, the current supply of low
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frequency liquidity traders, and the lagged supply of low frequency liquidity traders. This conjecture

is verified in what follows. Since prices are normally distributed, the agent’s optimal demand takes

the standard form xt = 1
γσ2
q
Et[qt+1], where qt+1 ≡ pt+1 + dt+1 − Rpt and σ2

q ≡ Vart[qt+1] is a

constant matrix in equilibrium.

Using the price conjecture (IA33) and the dynamics of liquidity trading yields

Et[qt+1] = (aH −R)pθ,HθH,t + (aLpθ,L1 −Rpθ,L2)θL,t−1 + (pθ,L2 −Rpθ,L1)θL,t, and (IA34)

σ2
q = (p2

θ,H + p2
θ,L)σ2

θ + σ2
D. (IA35)

Matching the coefficients with the market-clearing condition gives the following three conditions:

1

γσ2
q

(aH −R)pθ,H = 1− q, (IA36)

1

γσ2
q

(aLpθ,L1 −Rpθ,L2) =
q

2
, and (IA37)

1

γσ2
q

(pθ,L2 −Rpθ,L1) =
q

2
. (IA38)

If a solution exists, the price conjecture (IA33) is verified. Using (IA37) and (IA38),

pθ,L2 =
aL +R

1 +R︸ ︷︷ ︸
≡α

pθ,L1. (IA39)

Since 1
2 < α ≤ 1, |pθ,L2| < |pθ,L1|. Combining (IA38), (IA36), and (IA39) gives

pθ,L1 =
q/2

1− q

(
aH −R
α−R

)
︸ ︷︷ ︸

≡β

pθ,H . (IA40)

Since β > 0, pθ,L1 and pθ,H have the same sign. Equations (IA36) and (IA40) can be used to obtain

a quadratic equation for pθ,H :

((
q/2

1− q
β

)2

+ 1

)
σ2
θp

2
θ,H −

aH −R
(1− q)γ

pθ,H + σ2
D = 0. (IA41)

When q = 0, the equation reduces to the standard equation for price impact as in the model of
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Spiegel (1998) with one asset. Let βq ≡ q/2
1−qβ. The price impact of high frequency shocks is then

given by

pθ,H =
1

2
(
β2
q + 1

)
σ2
θ

 aH −R
(1− q)γ

±

√(
aH −R
(1− q)γ

)2

− 4
(
β2
q + 1

)
σ2
θσ

2
D

 . (IA42)

Note that pθ,H < 0, which implies pθ,L1 < 0 and pθ,L2 < 0. The coefficient on the lagged liquidity

shock is negative. Intuitively, a large lagged liquidity shock increases the asset supply, which lowers

the price (for the agent to absorb the supply in equilibrium). This is similar to the infrequent

rebalancing economy, in which the lagged demand coefficients are positive. The existence condition

follows from (IA42).

B. Return Autocorrelation

This section investigates return autocorrelation in a model with high and low frequency liq-

uidity trading. Note that Cov[θL,t, θL,t−1] = 0 since the shocks are uncorrelated. The first-order

autocovariance of excess returns is given by

Cov[qt+1, qt] =(1−RaH)
aH −R
1− a2

H

p2
θ,Hσ

2
θ + (1−Rα)(1 + aL)

α−R
1− a2

L

β2
qp

2
θ,Hσ

2
θ . (IA43)

The first component is standard: positive autocovariance requires highly persistent liquidity trad-

ing. The second component comes from the low frequency shocks (βq = 0 when q = 0). This

component is negative unless Rα > 1, which is equivalent to aL > 1/R− (R− 1). This condition is

only slightly less restrictive than aH > 1/R, which is the necessary condition for the first component

to be positive.

The second-order autocovariance of excess returns is given by

Cov[qt+2, qt] =aH(1−RaH)
aH −R
1− a2

H

p2
θ,Hσ

2
θ +

(
1 + (α−R)2 − (Rα)2

) α−R
1− a2

L

β2
qp

2
θ,Hσ

2
θ . (IA44)

To obtain (IA44), use the fact that aL −Rα = α−R. Again, the first component is standard and

the second component comes from low frequency shocks. The parameter condition for the second

component to be positive is more stringent than for the first-order autocovariance since Rα > 1 is
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only a necessary condition. The following proposition states this result.

Proposition IA4: If aH < 1/R and aL < 1/R−(R−1), the first- and second-order autocovariances

are negative.

I expect this result to hold for all lags. The mechanism that generates positive autocorrelation

in this economy differs significantly from the infrequent rebalancing mechanism. In particular, it

requires a highly persistent supply of liquidity traders. This is therefore similar to the economy

without infrequent traders discussed in the paper. Furthermore, a negative first-order autocorrela-

tion implies a negative second-order autocorrelation.

Infrequent traders provide liquidity. Thus, when they liquidate their abnormal positions, they

trade in the same direction as the initial liquidity shock that they absorbed. The same is not

true for low frequency liquidity shocks because they revert over time. When a trader absorbs a

low frequency shock today, he requires a price discount to absorb the shock (unless the shock is

highly persistent). Price reversal compensates the risk-averse trader for the liquidity he provides.

Therefore, return autocorrelation is negative in this case. In fact, the effect goes in the other

direction and adds a negative component to the benchmark autocorrelation. For instance, it may

be the case that Cov[qt+2, qt] < Cov[qt+1, qt] even when aL = aH .

V. Seasonality in Mean Liquidity Trading

Variation in the mean level of liquidity trading can generate significant cross-sectional variation

in mean returns across calendar periods. In the economy without infrequent rebalancing, assume

that mean liquidity trading varies with the calendar period and is given by the vector θ̄c(t). Thus,

the vector of supplies from liquidity traders at time t equals θt+ θ̄c(t). The equilibrium price vector

is given by

Pt = Pθθt +
aD

R− aD
Dt + P̄c(t). (IA45)
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In this direct extension of the frictionless model, the price coefficients solve (with h = 1)

PθΣθP
′
θ +

R− aθ
γF

Pθ +
R

R− aD
ΣD = 0N×N , and (IA46)

P̄c(j+1) −RP̄c(j) + (R− aθ)Pθ
(
S̄ + θ̄c(j)

)
= 0N×1, j = 1, . . . , C, (IA47)

where C is the number of calendar periods. The seasonality in mean liquidity trading does not affect

the price impact coefficients. Therefore, a model can simultaneously incorporate an autocorrelation

effect from infrequent rebalancing and a seasonality effect from mean liquidity trading.

Assume that a subset of assets exhibit seasonality in mean liquidity trading. For example, with

assets i and j, let θ̄i,c(t) = θ̄j,c(t) for c(t) = 2, . . . , C and θ̄i,c(t) 6= θ̄j,c(t), i 6= j, for c(t) = 1. Since

the expected excess return in calendar period c(t) is given by E[Qt+1|c(t)] = −(R− aθ)Pθθ̄c(t), the

cross-sectional variance in mean return is zero in all but one period in this example. To apply

this result, I simulate returns from two groups of assets in an economy with 13 calendar periods

and persistent liquidity shocks. The mean supply of liquidity traders θ̄c(t) is constant in the first

group. In the second group, θ̄c(t) is the same in all calendar periods but the last one. Figure IA1

shows that this seasonality in mean liquidity trading generates a persistent seasonality pattern in

the cross-sectional regression coefficients. A persistent seasonality pattern arises because the price

of risk is not constant across calendar periods.

0 13 26 39 52 65

−1

−0.5

0

0.5

1
·10−2

lag l

1
T
−
l

∑ T t=
l+

1
γ
l,
t

Average cross-sectional regression estimates

Figure IA1. Seasonality in mean liquidity trading. The figure shows cross-sectional re-
gression estimates from Qi,t = αl,t + γl,tQi,t−l + ui,t based on averages of 1000 simulations from a
T = 500 periods economy. The calibration assumes M = 13, R = 1.01, σθ = 0.4, aD = 0, σD = 0.2,
aθ = 0.6, γ = 1, θ̄1,j = 1 ∀j, θ̄2,j = 1 for j = 1, . . . , 12, and θ̄2,13 = 4.
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VI. Multiple Groups of Infrequent Traders

This section extends the benchmark model to allow for infrequent traders with heterogeneous

rebalancing horizons. More precisely, I consider an economy with two groups of infrequent traders

(in addition to frequent traders). Group i has a mass qi and an inattention period ki. While

analytical solutions are again not available, the rebalancing mechanism seems robust to having

multiple groups of infrequent traders. In particular, the autocorrelation pattern is subject to shifts

at both rebalancing horizons (lags k1 + 1 and k2 + 1): both autocorrelations can switch sign. This

suggests that the model can simultaneously explain seasonalities at different frequencies. I provide

a numerical example at the end of the section.

A. Solution

The market-clearing condition is

q1

k1 + 1
XI1
t +

q2

k2 + 1
XI2
t +

1− q1 − q2

h

h−1∑
j=0

XF
j,t =S̄ + θt

− q1

k1 + 1

k1∑
i=1

XI1
t−i −

q2

k2 + 1

k2∑
i=1

XI2
t−i. (IA48)

The new vector of state variables is of length (1 + (k1 +k2 + 2)N) and includes the lagged demands

from the second group of infrequent traders. The matrices AY and BY in Appendix A in the main

article are updated accordingly.

Define ϕX1 and ϕX2 such that ϕX1Yt = XI1
t and ϕX2Yt = XI2

t . The system of fixed point

14



equations that yields the equilibrium coefficients is then given by

q1/γI
k1 + 1

Σ−1
k1+1

 k1∑
j=0

Rk1−jAQA
j
Y

+
q2/γI
k2 + 1

Σ−1
k2+1

 k2∑
j=0

Rk2−jAQA
j
Y

 (IA49)

+
1− q1 − q2

h

h−1∑
j=0

1

αj+1
Fj+1

− ϕS̄ − ϕθ +
q1

k1 + 1
ϕX1 +

q2

k2 + 1
ϕX2 = 0, (IA50)

1

γI
Σ−1
k1+1

 k1∑
j=0

Rk−jAQA
j
Y

−B = 0, and (IA51)

1

γI
Σ−1
k2+1

 k2∑
j=0

Rk−jAQA
j
Y

− C = 0, (IA52)

where C is the N × (1 + (k1 + k2 + 2)N) matrix of equilibrium coefficients for the demands of

the second group of infrequent traders (i.e., XI2
t = CYt). The other coefficients are defined in

Appendix A in the main article.

B. Numerical Example

Figure IA2 plots the autocorrelations in an economy with two groups of infrequent traders

(k1 = 1 and k2 = 5). I set aθ = 0 to focus solely on the impact of infrequent rebalancing. The

second and sixth autocorrelations are positive, as predicted by the baseline model when aθ = 0.

The magnitude of the pattern depends on the proportion of infrequent traders in each group as well

as the volatility of liquidity shocks. As can be seen by comparing Panels A and B, this extended

model can generate a rich set of dynamics.

VII. Trading Volume

This section explains how to compute trading volume when 0 < q < 1. The following standard

lemma is stated without proof.

Lemma IA2: Let X and Y be jointly normal random variables with zero mean, variances σ2
X and

σ2
Y , and correlation ρ. Then, Cov[|X|, |Y |] = 2

π

(
ρ arcsin(ρ) +

√
1− ρ2 − 1

)
σXσY .
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Figure IA2. Partial autocorrelations predicted by the model with multiple groups
of infrequent traders for different liquidity shocks volatility σθ. The calibration assumes
q1 = 0.6, q2 = 0.3, k1 = 1, k2 = 5, h = 20, R = 1.01, aθ = 0, aD = 0, σD = 0.1, N = 2, and
ρD = 0.3.

Trading volume is given by

Vt =
1

2

 q

k + 1

∣∣XI
t −XI

t−k−1

∣∣+
1− q
h
|
∑
j

(XF
j,t −XF

j,t−1)|+ |θt − θt−1|

 . (IA53)

For simplicity, this formulation ignores the trading among frequent traders. The extra terms can

be computed, but I find volume autocorrelations to be almost identical regardless of whether h = 1

or h = 2 in my calibrations. The autocovariance of volume changes is given by

Cov[∆Vt,∆Vt+j ] = Cov[Vt, Vt+j ]− Cov[Vt, Vt+j−1] + Cov[Vt−1, Vt+j−1]− Cov[Vt−1, Vt+j ]. (IA54)

Hence, it is necessary to compute Cov[Vt, Vt+j ] (j ≥ 1). From (IA53), the autocovariance in volume

is the (weighted) sum of the autocovariances between absolute changes in θ, XI , and XF .

First, define ϕIk such that XI
t−k−1 = ϕIkYt−1. Second, note that XF

t = BFYt, where BF =

h
1−q

(
ϕS̄ + ϕθ − q

k+1(ϕX +B)
)

from the market-clearing condition (recall that XI
t = BYt). As a
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result,

XI
t −XI

t−k−1 = (BAY − ϕIk)Yt−1 +BBY εt, (IA55)

θt − θt−1 = (ϕθAY − ϕθ)Yt−1 + ϕθBY εt, and (IA56)

XF
t −XF

t−1 =
(
BFAY −BF

)
Yt−1 +BFBY εt. (IA57)

Thus, all the previous variables can be expressed as ∆X
t = MXYt−1 + KXεt, where MX and KX

are some constant parameter matrices associated with variable X.

To get an expression for Cov
[
|∆X

t |, |∆Z
t |
]
, first compute the covariance between the two vari-

ables:

Cov
[
∆X
t ,∆

Z
t+j

]
= Cov[MXYt−1 +KXεt,MZYt+j−1 +KZεt+j ]

= MXVY (AjY )′M ′Z +KXΣYB
′
Y (Aj−1

Y )′M ′Z , j ≥ 1, (IA58)

using the fact that Yt+j−1 = AjY Yt−1 +
∑j−1

i=0 A
i
YBY εt+j−1−i. Similarly, Var

[
∆X
t

]
= KXΣYK

′
X +

MXVYM
′
X . Hence, the correlation matrix between variables X and Z, Corr

[
∆X
t ,∆

Z
t+j

]
, can be

obtained easily. By joint normality, apply Lemma IA2 to compute the autocovariance between |X|

and |Z| (for each asset).

Finally, the autocorrelation of volume changes for asset i is given by

Corr [∆Vi,t,∆Vi,t+j ] =
Cov[∆Vi,t,∆Vi,t+j ]

Var[∆Vi,t]
,

where Var[∆Vi,t] = 2 (Var[Vi,t]− Cov[Vi,t, Vi,t+1]).

VIII. Additional Empirical Results

This section contains robustness checks and additional results for the empirical analysis on daily

returns.

Midquote returns: To control for the bid-ask bounce, I perform the regressions on midquote

returns over the period 1993 to 2012 (continuous series of bid and ask data are available on CRSP

as of the end of 1992). As expected, using midquote returns weakens reversal at the first lag (see
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Figure IA3). Surprisingly, the first coefficient is positive (but insignificant) for high turnover stocks.

Hypothesis 1 cannot be rejected for the sample of all stocks but is rejected with a t-statistic of

2.27 for high turnover stocks. More generally, correcting for bid-ask bounce should reduce reversal

effects, which may explain the decrease in statistical significance. Still, restricting the sample to

the one-third of largest stocks by capitalization at each date and using midquote returns rejects

the null at the 5% level (t-statistic of 2.08).

Firm size: The results are also robust to controlling for firm size. At each date, I sort stocks

into three groups based on average market capitalization over the past year. Figure IA4 shows that

the infrequent rebalancing pattern holds for all size groups. Small stocks do not drive the results.

Evolution of the pattern over time: Panel A of Figure IA5 plots estimates of the multiple

regressions for the extended sample from 1963 to 1993, while Panel B plots estimates on the

subsample from 1998 to 2012. Evidence of infrequent rebalancing at the fifth and tenth lags seems

strong for the most recent sample but difficult to discern for the older sample. The pattern thus

appears to be a recent phenomenon that holds in years that witnessed the emergence of high

frequency trading. As a robustness check, I find that the pattern also holds in the subsample 1983

to 1998 but is weaker at the tenth lag. The regression coefficients for the old sample tend to be

larger (in absolute value) than those for the recent one. This evidence suggests that market quality

has improved over time, consistent with the analysis of Chordia, Roll, and Subrahmanyam (2011).

As documented by Chordia, Roll, and Subrahmanyam (2011) for U.S. stocks, institutional

trading appears to be an important contributor to the rise in turnover observed since the early

1990s. While an increase in professional investing could have fostered market efficiency, institutional

trading could have also resulted in specific predictability patterns. To evaluate whether institutional

ownership can help explain the autocorrelation structure in daily returns, I obtain institutional

ownership data from the Thomson-Reuters Institutional Holdings (13F) Database. Any institution

with more than $100 million in assets under discretionary management has to report its holdings to

the SEC on a quarterly basis. When available, I obtain institutional ownership for each stock used

in the previous analysis. This procedure leaves an average of 1,600 stocks in the data set at each

date with both return and ownership data. The increase in institutional ownership in recent years

is substantial: the first (second) tercile of institutional ownership rises from roughly 10% (35%) in

1983 to 50% (80%) in 2012. Stocks are then split into three groups at each date based on the level
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of institutional ownership, and the multiple regression is estimated for each group. The regression

estimates—plotted in Figure IA6—are consistent with the empirical results of Sias and Starks

(1997): daily return autocorrelations increase with institutional ownership. There is no evidence,

however, that stocks with high institutional ownership exhibit more pronounced autocorrelation

patterns than medium ownership stocks. I reach a similar conclusion when jointly controlling for

institutional ownership and turnover with double sorts.
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Figure IA3. Cross-sectional multiple regressions of daily midquote returns. The follow-
ing cross-sectional regression is estimated for each day t: ri,t = αt + γ1,tri,t−1 + . . .+ γ20,tri,t−20 +
γµ,tµi,t + ui,t, where ri,t is the return computed from quote midpoints of stock i on day t and
µit is the average same-weekday (the same weekday as day t) return on stock i over the previous
year excluding the past 20 returns. The sample consists of NYSE/Amex common stock midquote
returns over the period 1993 to 2012. The left-hand charts plot the time-series averages of γl,t
(l = 1, . . . , 20). The right-hand charts plot t-statistics computed using a Newey-West correction
with twenty lags. Black lines indicate significance bounds at the 5% level. Panel A: all stocks.
Panel B: the third of stocks with the highest average turnover over the past 250 days as of date
t− 20.
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Figure IA4. Cross-sectional multiple regressions of daily returns for different market
capitalization groups. At each date t, stocks are allocated into three groups based on their
market capitalization as of date t − 21. The following cross-sectional regression is then estimated
for each group: ri,t = αt+γ1,tri,t−1 + . . .+γ20,tri,t−20 +γµ,tµi,t+ui,t, where ri,t is the simple return
of stock i on day t and µit is the average same-weekday (the same weekday as day t) return on
stock i over the previous year excluding the past 20 returns. The sample consists of NYSE/Amex
common stock returns over the period 1983 to 2012. The left-hand charts plot the time-series
averages of γl,t (l = 1, . . . , 20). The right-hand charts plot t-statistics computed using a Newey-
West correction with 20 lags. Black lines indicate significance bounds at the 5% level. Panel A:
low market capitalization stocks. Panel B: mid market capitalization stocks. Panel C: high market
capitalization stocks.
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Figure IA5. Cross-sectional multiple regressions of daily returns for different subsam-
ples. The following cross-sectional regression is estimated for each day t: ri,t = αt + γ1,tri,t−1 +
. . .+γ20,tri,t−20 +γµ,tµi,t+ui,t, where ri,t is the simple return of stock i on day t and µit is the aver-
age same-weekday (the same weekday as day t) return on stock i over the previous year excluding
the past 20 returns. The sample consists of NYSE/Amex common stock returns. The left-hand
charts plot the time-series averages of γl,t (l = 1, . . . , 20). The right-hand charts plot t-statistics
computed using a Newey-West correction with 20 lags. Black lines indicate significance bounds at
the 5% level. Panel A: period 1963 to 1992. Panel B: period 1998 to 2012.
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Figure IA6. Cross-sectional multiple regressions of daily returns for different insti-
tutional ownership groups. At each date t, stocks are allocated into three groups based on
their institutional ownership as of date t − 21. The following cross-sectional regression is then
estimated for each group: ri,t = αt + γ1,tri,t−1 + . . . + γ20,tri,t−20 + γµ,tµi,t + ui,t, where ri,t is the
simple return of stock i on day t and µit is the average same-weekday (the same weekday as day
t) return on stock i over the previous year excluding the past 20 returns. The sample consists of
NYSE/Amex common stock returns over the period 1983 to 2012. The left-hand charts plot the
time-series averages of γl,t (l = 1, . . . , 20). The right-hand charts plot t-statistics computed using
a Newey-West correction with 20 lags. Black lines indicate significance bounds at the 5% level.
Panel A: low institutional ownership stocks. Panel B: mid institutional ownership stocks. Panel C:
high institutional ownership stocks.
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