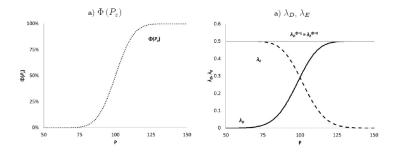
Discussion of "Speculation and Liquidity in Stock and Corporate Bond Markets" by Pasquariello and Sandulescu

Vincent Bogousslavsky

Boston College


EFA 2024

Study daily variations in bond and equity price impact and co-movement

- Important to disentangle among theories of illiquidity
- Important for large asset managers to manage their trades and the liquidity of their portfolio

Theory

One-period Kyle model with segmented market making and nonlinear payoffs

- x-axis indicates debt principal P, fixing firm value
- Bond/stock become more or less informationally sensitive (because of nonlinear payoff)

Empirical analysis

- Sample of 614 firms over 2010-2019
- Use Bharath and Shumway (2008) to estimate implied default probability (DEFPROB) at the *daily* level

$$\mathsf{DEFPROB} = \Phi\left(-\frac{\log(1/L) + (\mu - \frac{1}{2}\sigma_F^2)T}{\sigma_F\sqrt{T}}\right)$$

- Estimate daily price impact
 - Daily average of firm *i*'s (5mn \$ price change × trade sign)
 - \$ daily price change per 1% of daily order imbalance

Main results:

- Equity (bond) price impact is negatively (positively) related to DEFPROB
- Ø Bond-equity co-movement is non-monotonic in DEFPROB

Big picture

- Paper is at an advanced stage, I enjoyed reading it
- The theory and results make sense to me
- I won't comment on the theory
 - It would be nice to see a more thorough comparison to the model of Back and Crotty (2015)
 - No cross impact here, even though it seems important for the co-movement results
- I will focus on the tests of the equity price impact implications
 - Informed speculation is an important cross-sectional and time-series determinant of firm-level illiquidity due to "default-driven sensitivity to adverse selection" (p.27)

Adverse selection risk vs. inventory risk

The argument is that the relation between DEFPROB and price impact is hard to explain with inventory risk

- This is not easy because everything is endogenous (the authors are careful!)
- Let's look at the components of DEFPROB

$$\mathsf{DEFPROB} = \Phi\left(-\frac{\log(1/L) + (\mu - \frac{1}{2}\sigma_F^2)T}{\sigma_F\sqrt{T}}\right)$$

L: leverage
σ_F: firm volatility

Firm volatility

- Volatility is also positively associated with price impact / spread in inventory models (Grossman and Miller, 1988)
 - Thus, it cannot differentiate between the theories
- The authors find a "surprisingly" weak relation between price impact and volatility

		<pre>\$_PRICEI</pre>	MPACT_ID		<pre>\$_PRICEIMPACT_D</pre>					
	Panel A: Stocks									
	I	II	III	IV	Ι	II	III	IV		
FIRMVOL	-0.096*	0.020	-0.066*	0.072	0.336	1.95^{***}	0.971^{***}	1.80^{***}		
	[0.056]	[0.049]	[0.039]	[0.050]	[0.493]	[0.464]	[0.274]	[0.468]		

- Stock volatility is the (rolling) standard deviation of daily returns over the past year (following Bharath and Shumway, 2008)
 - It's very "slow-moving"
 - High-frequency variation in DEFPROB, high-frequ. inputs?

Firm volatility: high-frequency measures

Stronger link between realized volatility and spread measures (e.g., Bogousslavsky and Collin-Dufresne, 2023)

	<pre>\$Price Impact (dollar-weighted)</pre>							
constant	0.035	0.024	0.021	0.020	0.017			
	(28.44)	(70.00)	(51.63)	(44.17)	(36.35)			
rolling σ	-0.617							
	(-7.69)							
avg r		0.173						
011		(7.92)						
RVol30mn			0.500					
			(16.06)					
RVol15mn			. ,	0.638				
				(18.73)				
RVol5mn				. ,	0.842			
					(22.68)			
Adj. <i>R</i> ²	0.0026	0.0017	0.0133	0.0175	0.0254			
Obs. (stock-day)	115,400	115,400	115,400	115,400	115,400			
Sample: top size quintile U.S. stocks in 2017								

Sample: top size quintile U.S. stocks in 2017

 Also, interesting to compare DEFPROB to volatility and leverage since DEFPROB is a nonlinear function of both variables, as predicted by theory

Leverage

Can inventory models explain the relation between leverage and price impact? It seems harder (I'd emphasize that)

- Daily variation in Leverage is coming from MKTCAP since DEBT is updated quarterly
 - With slow-moving volatility, daily variation in DEFPROB is likely coming from variation in market capitalization
- Does it survive controlling for volatility and volume?
- One concern is that the paper uses \$ price impact
 - As the firm price goes down, it might be mechanical that \$ price impact declines
 - (Also, for the 2nd measure, \$ daily price change will incorporate the overnight period and might be biased by dividends, splits, etc.)
 - Report results with % price impact

Additional suggestions

Examine effective spread and realized spread

- Realized spread associated with compensation for liquidity provision
- Provide the second state of the second stat
 - There could be an increase in noise trading for stocks close to default
 - Use realized informed trading measures?
 - Duarte, Hu, and Young (2020); Bogousslavsky, Fos, and Muravyev (2024)

Conclusions

- Nice paper with a strong theory
- It might help to emphasize more clearly the main message
- Also, adjust the empirical tests to allow for better measures of volatility and more robustness relative to price impact measures and controls