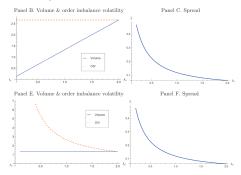
# Discussion of "Risky Intraday Order Flow and Equity Option Liquidity" by Doshi, Pederzoli, and Sert

Vincent Bogousslavsky

Boston College


2024 FMA Conference on Derivatives & Volatility

#### Overview

- This paper examines the relation between order flow volatility (OFV) and daily effective spreads in the option market
- Main findings:
  - Strong positive relation for both SPX options and individual stock options
    - Not explained by volume/volatility controls and market-maker inventory variables
  - Impact of OFV is greater for short maturity options
  - Multi-exchange trading: indirect costs are larger

# High-frequency order imbalance volatility

• "Bad volume" vs "good volume"



- Why high-frequency measure?
  - Increase in buy imbalances in the morning followed by increase in sell imbalances in the afternoon
  - Daily imbalance is unchanged, whereas OFV captures increased inventory volatility for LP

# Strong positive association with spreads for stocks

Bogousslavsky and Collin-Dufresne (2023)

 $\log \mathbf{s}_{i,t} = \alpha_i + \beta_\tau \log \tau_{i,t} + \beta_\sigma \log \sigma_{i,t} + \beta_{\mathsf{HFOIV}} \log \mathsf{HFOIV}_{i,t} + \mathsf{ctrls} + \epsilon_{i,t}$ 

| Median Value across Years |          |          |              |          |         |          |         |          |  |  |
|---------------------------|----------|----------|--------------|----------|---------|----------|---------|----------|--|--|
|                           |          | Small    | Large Stocks |          |         |          |         |          |  |  |
| $\beta_{\tau}$            | -0.15    | -0.33    |              |          | 0.04    | -0.28    |         |          |  |  |
|                           | (-26.29) | (-33.60) |              |          | (3.41)  | (-19.71) |         |          |  |  |
| $\beta_{\sigma}$          | 0.42     | 0.46     |              |          | 0.35    | 0.46     |         |          |  |  |
|                           | (37.00)  | (45.05)  |              |          | (19.01) | (30.95)  |         |          |  |  |
| βηγοιν                    |          | 0.20     |              |          |         | 0.29     |         |          |  |  |
|                           |          | (16.34)  |              |          |         | (19.47)  |         |          |  |  |
| $\beta_{\Delta \tau}$     |          |          | -0.08        | -0.24    |         |          | 0.13    | -0.23    |  |  |
|                           |          |          | (-13.62)     | (-26.46) |         |          | (7.66)  | (-19.71) |  |  |
| $\beta_{\Delta\sigma}$    |          |          | 0.32         | 0.36     |         |          | 0.30    | 0.39     |  |  |
|                           |          |          | (30.02)      | (36.59)  |         |          | (17.14) | (31.14)  |  |  |
| $\beta_{\Delta HFOIV}$    |          |          |              | 0.17     |         |          |         | 0.29     |  |  |
| - Link or i               |          |          |              | (16.34)  |         |          |         | (22.56)  |  |  |
| $R^{2}(\%)$               | 27.70    | 31.46    | 9.25         | 13.15    | 16.63   | 26.19    | 7.99    | 19.02    |  |  |

Note the strong relation with (realized) volatility

#### Comments

- Paper is clear and well executed, with many robustness checks
- My comments will focus on getting more economic intuition
  - Comparison to other measures of inventory costs and takeaways for the literature
  - 2 Leveraging the individual stock options results

#### Comparison to other measures of inventory costs Volatility is associated with higher trading costs under both adverse selection and inventory frameworks

| Panel A: Calls                       |                      |                      |                    |                    |                    |                                                      |                                                      |                                                |  |  |
|--------------------------------------|----------------------|----------------------|--------------------|--------------------|--------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------|--|--|
|                                      | 0                    | 1-6                  | 7-13               | 14-20              | 21 - 27            | 28-34                                                | 35-41                                                | 42-48                                          |  |  |
| $\log(SD_t)$                         | 0.02***<br>(4.11)    | 0.02***<br>(7.3)     | 0.007***<br>(7.01) | 0.003***<br>(3.81) | 0.003***<br>(5.47) | $\begin{array}{c} 0.004^{***} \\ (6.71) \end{array}$ | 0.001***<br>(3.08)                                   | $\begin{array}{c} 0.001 \\ (1.34) \end{array}$ |  |  |
| $\log(\text{volume}_t)$              | 0.001<br>(0.19)      | -0.013***<br>(-4.89) | 0.002**<br>(2.29)  | 0.003***<br>(4.95) | 0.002***<br>(4.13) | -0.0001<br>(-0.45)                                   | $\begin{array}{c} 0.002^{***} \\ (4.39) \end{array}$ | $0.002^{***}$<br>(5.64)                        |  |  |
| $ OI_t $                             | -0.016**<br>(-2.06)  | 0.002<br>(0.5)       | (0.001)<br>(0.81)  | 0.001<br>(1.15)    | 0.002<br>(1.47)    | 0.001*<br>(1.73)                                     | 0.002***<br>(3.49)                                   | 0.004***<br>(4.91)                             |  |  |
| $R_{M,t}$                            | -1.939***<br>(-3.77) | -0.007<br>(-0.04)    | -0.03<br>(-0.3)    | -0.012<br>(-0.27)  | -0.001<br>(-0.05)  | -0.084<br>(-1.15)                                    | 0.022<br>(0.75)                                      | -0.031<br>(-0.95)                              |  |  |
| VIX <sub>t</sub>                     | -0.028<br>(-0.92)    | (1.63)               | -0.011<br>(-0.86)  | -0.005<br>(-0.69)  | -0.002<br>(-0.05)  | 0.021**<br>(1.98)                                    | 0.046***<br>(4.21)                                   | 0.026**<br>(2.15)                              |  |  |
| Time Controls<br>Other Controls<br>N | Yes<br>Yes<br>1036   | Yes<br>Yes<br>2991   | Yes<br>Yes<br>2900 | Yes<br>Yes<br>2798 | Yes<br>Yes<br>2736 | Yes<br>Yes<br>2597                                   | Yes<br>Yes<br>2363                                   | Yes<br>Yes<br>2166                             |  |  |
| Adj. R <sup>2</sup>                  | 0.484                | 0.304                | 0.64               | 0.664              | 0.681              | 0.629                                                | 0.703                                                | 0.675                                          |  |  |

| Table IA.3:     | Time-series | Regressions | $\mathbf{of}$ | $ES_t$ | on | $\log(SD_t)$ |  |  |
|-----------------|-------------|-------------|---------------|--------|----|--------------|--|--|
| for SPX Options |             |             |               |        |    |              |  |  |

- VIX measures implied volatility over next 30 days
  - May not be appropriate for short-term options (and seems confirmed in the data)
  - The concern is that it "explains" the option maturity result
- Volatility increases option price (denominator of spread)
- Use realized volatility (or a forecast of intraday volatility)?

### Comparison to other measures of inventory costs (2)

|                                  | Panel A: SPX Calls |             |          |          |          |              |              |             |  |
|----------------------------------|--------------------|-------------|----------|----------|----------|--------------|--------------|-------------|--|
| Days to Maturity                 | 0                  | 1-6         | 7-13     | 14-20    | 21-27    | 28-34        | 35 - 41      | 42-48       |  |
| $log(SD)_t$                      | 0.02***            | 0.011***    | 0.006*** | 0.004*** | 0.004*** | 0.005***     | 0.003***     | 0.002***    |  |
|                                  | (4.33)             | (5.51)      | (5.43)   | (4.88)   | (6.92)   | (8.36)       | (5.94)       | (4.87)      |  |
| $log(volume)_t$                  | 0.001              | -0.0001     | 0.003**  | 0.002**  | 0.001    | -0.002***    | -0.0001      | $0.001^{*}$ |  |
|                                  | (0.3)              | (-0.03)     | (2.3)    | (2.28)   | (1.55)   | (-3.05)      | (-0.3)       | (1.68)      |  |
| Order Imbalance <sub>t</sub>     | -0.008             | $0.009^{*}$ | -0.001   | -0.001   | 0.002    | 0.0001       | 0.002        | 0.001       |  |
|                                  | (-0.58)            | (1.9)       | (-0.31)  | (-0.47)  | (1.19)   | (0.27)       | (1.42)       | (0.94)      |  |
| MM NetInventory <sub>t-1</sub>   | -0.026**           | -0.008      | -0.001   | -0.001   | -0.001   | -0.001       | $-0.001^{*}$ | -0.001      |  |
|                                  | (-2.01)            | (-1.36)     | (-1)     | (-0.99)  | (-1.55)  | (-0.81)      | (-1.87)      | (-1.26)     |  |
| MM GammaInventory <sub>t-1</sub> | $1.026^{*}$        | $0.575^{*}$ | 0.061    | 0.0001   | 0.164    | 0.146        | 0.327***     | 0.257       |  |
|                                  | (1.71)             | (1.77)      | (0.57)   | (0.0001) | (1.33)   | (1.26)       | (2.7)        | (1.4)       |  |
| R <sub>M,t</sub>                 | -1.921***          | 0.179       | 0.02     | 0.0001   | 0.009    | -0.129       | 0.02         | 0.025       |  |
|                                  | (-3.97)            | (1.07)      | (0.19)   | (0.0001) | (0.23)   | (-1.26)      | (0.5)        | (0.6)       |  |
| VIX <sub>t</sub>                 | -0.084**           | -0.094***   | -0.04*** | -0.017** | -0.014** | $-0.015^{*}$ | -0.007       | -0.004      |  |
|                                  | (-2.13)            | (-4.89)     | (-3.9)   | (-2.48)  | (-2.25)  | (-1.78)      | (-0.94)      | (-0.47)     |  |
| Time Controls                    | Yes                | Yes         | Yes      | Yes      | Yes      | Yes          | Yes          | Yes         |  |
| Other Controls                   | Yes                | Yes         | Yes      | Yes      | Yes      | Yes          | Yes          | Yes         |  |
| N                                | 996                | 2642        | 2838     | 2747     | 2685     | 2542         | 2307         | 2111        |  |
| Adj. R <sup>2</sup>              | 0.471              | 0.512       | 0.384    | 0.358    | 0.316    | 0.362        | 0.33         | 0.349       |  |

#### Table 7: Market-Maker Inventory Variables

Strikingly (at least to an outsider), none of the literature's inventory variables works!

- Are they subsumed by order flow volatility (log(SD))?
- This seems important to clarify for the literature

#### Leveraging the individual stock option results

Currently, the individual stock option results are presented like a robustness check for the SPX results

- $\Rightarrow$  exploit cross-sectional variation across securities
  - Order imbalance persistence is likely to vary across securities
    - This has implications for the importance of OFV over absolute order imbalance
    - They convey the same information with highly persistent order flow
  - Stoikov and Saglam (2009) suggest different implications for spread-inventory dynamics based on the liquidity of the underlying stock
    - Role of delta hedging? Control for stock liquidity variables?

#### Additional suggestions

- Report simple correlations
  - Inventory risk of SPX options with different maturities
- Behavior of the measure intraday, closer to expiration, and around news announcement?
- Pricing implications?
  - Christoffersen et al. (2018) find that effective spreads strongly predict option returns

#### In summary

- Nice paper that shows convincing evidence of a positive relation between order imbalance volatility and spreads in the options market
- More results to build economic intuition would strengthen the paper
  - To get broader takeaways for the literature, it might be important to explain the effect (or lack of effect) for all considered variables (such as volatility)
  - Does it change our perspective on existing results?

Good luck!